Abstract
We prove mean and pointwise ergodic theorems for the action of a lattice subgroup in a connected algebraic Lie group on infinite volume homogeneous algebraic varieties. Under suitable necessary conditions, our results are quantitative, namely we establish rates of convergence in the mean and pointwise ergodic theorems, which can be estimated explicitly. Our results give a precise and in most cases optimal quantitative form to the duality principle governing dynamics on homogeneous spaces. We illustrate their scope in a variety of equidistribution problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.