Abstract

The application of Non-Orthogonal Multiple Access (NOMA) technology into satellite-aerial-ground integrated networks can meet the requirements of ultra-high rate and massive connectivity for the Sixth-Generation (6G) communication systems. We consider an uplink NOMA scenario for such a satellite-aerial-ground integrated network where multiple users communicate with satellite under the help of an Unmanned Aerial Vehicle (UAV) as an aerial relay equipped with a phased array. Supposing that buffer-aided decode-and-forward protocol is adopted at the UAV relay, we first formulate an optimization problem to maximize Ergodic Sum Rate (ESR) of the considered system subject to individual power constraint and quality-of-service constraint of each user. Then, with known imperfect channel state information of each user, we propose a joint power allocation and robust Beam Forming (BF) iterative algorithm to maximize ESR for the user-to-UAV link. Besides, to take the advantages of Free-Space Optical (FSO) and millimeter Wave (mmWave) communications, we present a switch-based hybrid FSO/mmWave scheme and a robust BF algorithm for the UAV-to-satellite link to achieve higher rate. Moreover, a closed-form ESR expression is derived. Finally, the effectiveness and correctness of the proposed solutions are verified by numerical simulations, and the performance evaluation results show that the proposed solutions not only achieve performance enhancement and robustness, but also outperform the orthogonal multiple access significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call