Abstract

Brownian yet non-Gaussian diffusion has recently been observed in numerous biological and active matter system. The cause of the non-Gaussian distribution have been elaborately studied in the idea of a superstatistical dynamics or a diffusing diffusivity. Based on a random diffusivity model, we here focus on the ergodic property and the scatter of the amplitude of time-averaged mean-squared displacement (TAMSD). By investigating the random diffusivity model with three categories of diffusivities, including diffusivity being a random variable D, a time-dependent but uncorrelated diffusivity D(t), and a correlated stochastic process D(t), we find that ensemble-averaged TAMSDs are always normal while ensemble-averaged mean-squared displacement can be anomalous. Further, the scatter of dimensionless amplitude is completely determined by the time average of diffusivity D(t). Our results are valid for arbitrary diffusivity D(t).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call