Abstract

AbstractThe ergodic theory and geometry of the Julia set of meromorphic functions on the complex plane with polynomial Schwarzian derivative are investigated under the condition that the function is semi-hyperbolic, i.e. the asymptotic values of the Fatou set are in attracting components and the asymptotic values in the Julia set are boundedly non-recurrent. We first show the existence, uniqueness, conservativity and ergodicity of a conformal measure m with minimal exponent h; furthermore, we show weak metrical exactness of this measure. Then we prove the existence of a σ-finite invariant measure μ absolutely continuous with respect to m. Our main result states that μ is finite if and only if the order ρ of the function f satisfies the condition h > 3ρ/(ρ+1). When finite, this measure is shown to be metrically exact. We also establish a version of Bowen's Formula, showing that the exponent h equals the Hausdorff dimension of the Julia set of f.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.