Abstract
We investigate ergodic properties of Markov semigroups in von Neumann algebras with the help of the notion of constrictor, which expresses the idea of closeness of the orbits of the semigroup to some set, as well as the notion of generalised averages, which generalises to arbitrary abelian semigroups the classical notions of Ces`aro, Borel, or Abel means. In particular, mean ergodicity, asymptotic stability, and structure properties of the fixed-point space are analysed in some detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.