Abstract

AbstractErgodic optimization is the process of finding invariant probability measures that maximize the integral of a given function. It has been conjectured that ‘most’ functions are optimized by measures supported on a periodic orbit, and it has been proved in several separable spaces that an open and dense subset of functions is optimized by measures supported on a periodic orbit. All known positive results have been for separable spaces. We give in this paper the first positive result for a non-separable space, the space of super-continuous functions on the full shift, where the set of functions optimized by periodic orbit measures contains an open dense subset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.