Abstract

We present a version of the stochastic maximum principle (SMP) for ergodic control problems. In particular we give necessary (and sufficient) conditions for optimality for controlled dissipative systems in finite dimensions. The strategy we employ is mainly built on duality techniques. We are able to construct a dual process for all positive times via the analysis of a suitable class of perturbed linearized forward equations. We show that such a process is the unique bounded solution to a backward SDE on infinite horizon from which we can write a version of the SMP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.