Abstract

The Swift–Hohenberg fluid convection system with both local and nonlocal nonlinearities under the influence of white noise is studied. The objective is to understand the difference in the dynamical behavior in both local and nonlocal cases. It is proved that when sufficiently many of its Fourier modes are forced, the system has a unique invariant measure, or equivalently, the dynamics is ergodic. Moreover, it is found that the number of modes to be stochastically excited for ensuring the ergodicity in the local Swift–Hohenberg system depends only on the Rayleigh number (i.e., it does not even depend on the random term itself), while this number for the nonlocal Swift–Hohenberg system relies additionally on the bound of the kernel in the nonlocal interaction (integral) term, and on the random term itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.