Abstract

We study the ergodic control problem for a class of controlled jump diffusions driven by a compound Poisson process. This extends the results of Arapostathis et al. (2019) to running costs that are not near-monotone. This generality is needed in applications such as optimal scheduling of large-scale parallel server networks.We provide a full characterizations of optimality via the Hamilton–Jacobi–Bellman (HJB) equation, for which we additionally exhibit regularity of solutions under mild hypotheses. In addition, we show that optimal stationary Markov controls are a.s. pathwise optimal. Lastly, we show that one can fix a stable control outside a compact set and obtain near-optimal solutions by solving the HJB on a sufficiently large bounded domain. This is useful for constructing asymptotically optimal scheduling policies for multiclass parallel server networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.