Abstract

We present an analytical characterization of the ergodic capacity for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay network over asymmetric channels. In the two-hop system that we consider, the source-relay and relay-destination channels undergo Rayleigh and Rician fading, respectively. Considering arbitrary-rank means for the relay-destination channel, we first investigate the marginal distribution of an unordered eigenvalue of the cascaded AF channel, and we provide an analytical expression for the ergodic capacity of the system. The closed-form expressions that we derive are computationally efficient and validated by numerical simulation. Our results also show the impact of the signal-to-noise ratio and of the Rician factor on this asymmetric relay network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.