Abstract

Advances in higher-end spectrum utilization has enabled user equipment to dock multiple antenna elements, and hence make use of selectivity via equalization in new generation of mobile networks. The equalization can exploit channel statistics to shape covariance matrices, and hence improve network performance at the physical layer of these networks by projecting segregated signals to non-overlapping subspaces. We propose to establish the promise of covariance shaping method by incorporating the equalizers in the modelling of a downlink multi-user multiple-input multiple-output (MU-MIMO) systems and thereby characterizing a key performance indicator, namely, the sum ergodic capacity. This is achieved by utilizing a residue theory approach which can account for indefinite eigenvalues. The system modelling is generic in a sense that it requires the base station (BS) to only have second order statistics of the channel rather than instantaneous knowledge. Furthermore, the BS incorporates a transmit beamformer design to enhance the ergodic capacity and feedforward the information of covariance shaping equalizers. Search method for transmit beamforming is also proposed which shows a promising three fold increase in sum ergodic capacity at signal-to-noise ratio of 10 dB for the considered MU-MIMO system. Proposed characterization of the system is authenticated using simulation means, and a comparative analysis of transmit beamformer designs on the sum ergodic rate is showcased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.