Abstract

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call