Abstract

A time lens allows one to stretch or compress optical waveforms in time, similar to the conventional lens in space. However, a single-time-lens imaging system always imparts a residual temporal chirp on the image, which may be detrimental for quantum networks, where the temporal image interacts with other fields. We show that a two-time-lens imaging system satisfying the telescopic condition, a time telescope, is necessary and sufficient for creating a chirpless image. We develop a general theory of a time telescope, find the conditions for loss minimization, and show how an erecting time telescope creating a real image of a temporal object can be constructed. We consider several applications of such a telescope to making indistinguishable the photons generated by spontaneous parametric downconversion or single emitters such as quantum dots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call