Abstract

The celebrated Erdős–Ko–Rado theorem about the maximal size of an intersecting family of r-element subsets of {1,…,n} was extended to the setting of exterior algebra in [5, Theorem 2.3] and in [6, Theorem 1.4]. However, the equality case has not been settled yet. In this short note, we show that the extension of the Erdős–Ko–Rado theorem and the characterization of the equality case therein, as well as those of the Hilton–Milner theorem to the setting of exterior algebra in the simplest non-trivial case of two-forms follow from a folklore puzzle about possible arrangements of an intersecting family of lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.