Abstract

A covering system is a finite collection of arithmetic progressions whose union is the set of integers. The study of these objects was initiated by Erdős in 1950, and over the following decades he asked many questions about them. Most famously, he asked whether there exist covering systems with distinct moduli whose minimum modulus is arbitrarily large. This problem was resolved in 2015 by Hough, who showed that in any such system the minimum modulus is at most 1016. The purpose of this note is to give a gentle exposition of a simpler and stronger variant of Hough’s method, which was recently used to answer several other questions about covering systems. We hope that this technique, which we call thedistortion method, will have many further applications in other combinatorial settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.