Abstract

STUDY QUESTIONWhat are the in vitro effects of estrogen receptor β (ERβ) activation on the function of endothelial cells (ECs) from different vascular beds: human endometrial ECs (HEECs; endometrium), uterine myometrial microvascular ECs (UtMVECs; myometrium) and human umbilical vein ECs (HUVECs)?SUMMARY ANSWERStudies conducted in vitro demonstrate that the ERβ agonist 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) has EC type-specific effects on patterns of gene expression and network formation. Identification of a key role for the transcription factor Sp1 in ERβ-dependent signaling in uterine ECs offers new insights into cell-specific molecular mechanisms of estrogen action in the human uterus.WHAT IS KNOWN ALREADYEstrogens, acting via ERs (ERα and ERβ), have important, body-wide impacts on the vasculature. The human uterus is an estrogen target organ, the endometrial lining of which exhibits physiological, cyclical angiogenesis. In fixed tissue sections, human endometrial ECs are immunopositive for ERβ.STUDY DESIGN, SIZE, DURATIONCells were treated with a vehicle control or the ERβ agonist, DPN, for 2 h or 24 h (n = 5) followed by gene expression analysis. Functional assays were analyzed after a 16 h incubation with ligand (n = 5).PARTICIPANT/MATERIALS, SETTING, METHODSAnalysis of DPN-treated ECs using Taqman gene array cards focused on genes involved in angiogenesis and inflammation identified cell type-specific ERβ-dependent changes in gene expression, with validation using qPCR and immunohistochemistry. Molecular mechanisms involved in ERβ signaling were investigated using bioinformatics, reporter assays, immunoprecipitation, siRNA and a specific inhibitor blocking Sp1-binding sites. The endometrium and myometrium from women with regular menses were used to validate the protein expression of candidate genes.MAIN RESULTS AND THE ROLE OF CHANCEHEECs and UtMVECs were ERβ+/ERα−. Treatment of ECs with DPN had opposite effects on network formation: a decrease in network formation in HEECs (P ≤ 0.001) but an increase in UtMVECs (P ≤ 0.05). Genomic analysis identified opposite changes in ERβ target gene expression with only three common transcripts (HEY1, ICAM1, CASP1) in all three ECs; a unique profile was observed for each. An important role for Sp1 was identified, consistent with the regulation of ERβ target genes via association with the transcription factor (‘tethered’ mechanism).LIMITATIONS, REASONS FOR CAUTIONThe study was mainly carried out in vitro using ECs of which one type was immortalized. Although the analysis of the protein expression of candidate genes was carried out using intact tissue samples from patients, investigations into in vivo angiogenesis were not carried out.WIDER IMPLICATIONS OF THE FINDINGSThese results have implications for our understanding of the mechanisms responsible for ERβ-dependent changes in EC gene expression in hormone-dependent disorders.STUDY FUNDING/COMPETEING INTEREST(S)The study was funded by a Medical Research Council Programme Grant. E.G. is the recipient of an MRC Career Development Fellowship. The authors have nothing to disclose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.