Abstract

To investigate the effect of Erchen Decoction on iron homeostasis in mice with nonalcoholic fatty liver disease (NAFLD) and its mechanism for regulating iron transport in spleen cells. Thirty male C57BL/6J mice were given a high-fat diet for 12 weeks and randomized (n=6) at the 7th week for gavage (3 times a week) of drinking water (NAFLD model group), Erchen Decoction at low, medium and high doses (7.5, 15, and 30g/kg, respectively), or polyene phosphatidyl choline (PPC; 9.12 mg/kg), with another 6 mice with low-fat and low-sugar feeding as the control group. The active components of Erchen Decoction were determined by HPLC-MS. Lipid accumulation in the liver was evaluated by HE staining and Nile red staining. Prussian blue staining was used to observe iron content in the spleen. The iron ion content in the liver tissue was detected using a detection kit. The expressions of ferroportin1 (Fpn1), transferrin receptor (TfR), Steap3, HO-1, Ter-119, CD163 and CD68 were detected using Western blotting, immunohistochemistry and immunofluorescence staining. Medium- and high-dose Erchen Decoction partially reversed the increase of lipid accumulation in the liver of NAFLD mice and showed better lipid-lowering effect than PPC. The NAFLD mice showed significantly decreased iron ion content in the spleen with increased hepatic and serum iron contents (P < 0.05), decreased TfR protein expression (P < 0.05), and increased Fpn1 and Steap3 protein expressions (P < 0.05), and these changes were significantly improved by the drug interventions. Erchen Decoction also improved the function of CD163 macrophages in the spleen of NAFLD mice by up-regulating the expression of HO-1 (P < 0.05). Erchen Decoction can alleviate high-fat diet-induced iron metabolism disorder by improving the iron ion transport ability of the spleen cells to delay the progression of NAFLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.