Abstract

Recent results obtained for Er2O3-SiO2 monolithic xerogels and erbium activated SiO2-TiO2 planar waveguides are presented. Monolithic erbium-activated silica xerogels with erbium content ranging from 0 up to 40000 ppm were prepared by the sol-gel technique. Samples were densified by thermal treatment in air at 950 degrees C for 120 hours. The densification degree and the relative content of hydroxyl groups were studied by NIR absorption and Raman spectroscopies. Emission at 1.5 micrometers , characteristic of the 4I13/2 yields 4I15/2 transition of Er3+ ions, was observed at room temperature for all monolithic samples upon continuous wave excitation at 980 nm. For the 5000 Er/Si ppm doped xerogel, an intense photoluminescence was observed with a lifetime of 8 ms for the metastable 4I13/2 level. Passive and erbium-activated SiO2-TiO2 planar waveguides, monomode at 632.8 nm, were prepared by a dip-coating technique. Some parameters such as H2O content, intermediate and final thermal treatments, and the molar ratio TiO2/SiO2 were modified during the preparation of the solution in order to minimize the final content of residual hydroxyl groups and the phase separation between silica and titania. Raman spectroscopy was used to check the structural properties of the waveguides. A lifetime of 7 ms was measured for the metastable 4I13/2 level in a 93SiO2-7TiO2 planar waveguide activated by 10000 ppm Er/(Si + Ti). The best value of the attenuation coefficient was of 0.5 dB/cm at 632.8 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.