Abstract

Optically active SiOx nanowires were grown on silicon by ion-implanting it with metallic impurities and annealed at 1100 °C in an Ar ambient. The implanted metals precipitate on the silicon surface and act as catalysts for nanowire growth. Ion implantation of erbium into silicon and subsequent heating in an argon ambient resulted in selective nucleation and growth of optically active silica nanowires. The bottom-up nanowire growth, mediated by vapor liquid solid mechanism, was also demonstrated for a multimetal (Au:Er) implant combinations in Si. The role of Er as a catalyst and dopant resulted in optically active silica nanowires that exhibited photoluminescence emission at 1.53 μm from an Er3+ intra-4f transition. Time resolved photoluminescence (PL) from these nanostructures indicated a luminescence lifetime of 24 ms, larger than that generally observed for Er-doped bulk silica. This increase in luminescence lifetime is attributed to a reduction in the optical density of states of Er in the nanowire sa...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.