Abstract

EGFR family members are tyrosine kinase transmembrane receptors that, in response to specific extracellular ligands, activate cytoplasmic pathways involved in cell proliferation, migration and differentiation. More recently, a pivotal role for EGF receptors has emerged, through the description of their nuclear localization.We report here the characterization of a nuclear variant of the kinase-defective ErbB3 receptor, ErbB380kDa, spanning the intracytoplasmic domain of the receptor. We assessed the putative transcriptional functions of ErbB380KDa in cancer cells, through the regulation of the proliferative Cyclin D1 gene, an already known target of the ErbB3 cytoplasmic signaling. We demonstrate here that the binding of ErbB380KDa on the promoter activates Cyclin D1 transcription and subsequent protein expression, leading to an increased cell proliferation. This mechanism can be balanced in response to the ectopic expression of the tumor suppressor p14ARF that physically interacts with ErbB3100kDa and sequesters it into nucleoli.Our data also show that ErbB380kDa increases the transcription of proliferative genes even though the cytoplasmic pathways are not activated. This nuclear ErbB3 pathway and the target genes concerned need to be further studied. Indeed, such mechanism could explain the tumor relapse observed in response to treatments aimed at blocking the receptor activation in response to ligand binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.