Abstract

Most invasive lobular breast carcinomas (ILBCs) are luminal-type carcinomas with an HER2-negative phenotype (ERBB2 or HER2 un-amplified) and CDH1 mutations. Rare variants include ERBB2-amplified subtypes associated with an unfavorable prognosis and less response to anti-HER2 targeted therapies. We analyzed the clinicopathological and molecular features of ERBB2-amplified ILBC and compared these characteristics with ERBB2-unamplified ILBC. A total of 253 patients with ILBC were analyzed. Paraffin-embedded formalin-fixed tumor samples from 250 of these patients were added to a tissue microarray. Protein expression of prognostic, stem cell and breast-specific markers was tested by immunohistochemistry (IHC). Hybrid capture-based comprehensive genomic profiling (CGP) was performed for 10 ILBCs that were either fluorescent in situ hybridization (FISH) or IHC positive for HER2 amplification/overexpression and 10 ILBCs that were either FISH or IHC negative. Results were compared with a CGP database of 44,293 invasive breast carcinomas. The CGP definition of ERBB2 amplification was five copies or greater. A total of 17 of 255 ILBC (5%) were ERBB2 amplified. ERBB2-amplified ILBC had higher tumor stage (p < 0.0001), more frequent positive nodal status (p = 0.00022), more distant metastases (p = 0.012), and higher histological grade (p < 0.0001), and were more often hormone receptor negative (p < 0.001) and more often SOX10 positive (p = 0.005). ERBB2 short variant sequence mutations were more often detected in ERBB2-unamplified tumors (6/10, p = 0.027), whereas CDH1 mutations/copy loss were frequently present in both subgroups (9/10 and 7/10, respectively). Amplification of pathogenic genes were more common in HER2-positive ILBC (p = 0.0009). CDK12 gene amplification (≥6 copies) was detected in 7 of 10 ERBB2-amplified ILBC (p = 0.018). There were no CDK12 gene amplifications reported in 44,293 invasive breast carcinomas in the FMI Insights CGP database. ERBB2-amplified ILBC is a distinct molecular subgroup with frequent coamplification of CDK12, whereas ERBB2 sequence mutations occur only in ERBB2-unamplified ILBC. CDK12/ERBB2 co-amplification may explain the poor prognosis and therapy resistance of ERBB2-amplified ILBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.