Abstract

BackgroundBoth epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence. We have previously demonstrated that alcohol enhanced the migration/invasion of breast cancer cells and cancer cells overexpressing ErbB2/HER2 were more sensitive to alcohol exposure. However, the underlying mechanisms remain unclear. This study was designed to investigate the mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. Cancer stem cells (CSCs) play a critical role in cancer metastasis and recurrence.MethodsWe evaluated the effect of chronic alcohol exposure on mammary tumor development/metastasis in MMTV-neu transgenic mice and investigated the cell signaling in response to alcohol exposure in breast cancer cells overexpressing ErbB2/HER2.Results and discussionChronic alcohol exposure increased breast cancer stem cell-like CSC population and enhanced the lung and colon metastasis in MMTV-neu transgenic mice. Alcohol exposure caused a drastic increase in CSC population and mammosphere formation in breast cancer cells overexpressing ErbB2/HER2. Alcohol exposure stimulated the phosphorylation of p38γ MAPK (p-p38γ) which was co-localized with phosphorylated ErbB2 and CSCs in the mammary tumor tissues. In vitro results confirmed that alcohol activated ErbB2/HER2 and selectively increased p-p38γ MAPK as well as the interaction between p38γ MAPK and its substrate, SAP97. However, alcohol did not affect the expression/phosphorylation of p38α/β MAPKs. In breast cancer cell lines, high expression of ErbB2 and p-p38γ MAPK was generally correlated with more CSC population. Blocking ErbB2 signaling abolished heregulin β1- and alcohol-stimulated p-p38γ MAPK and its association with SAP97. More importantly, p38γ MAPK siRNA significantly inhibited an alcohol-induced increase in CSC population, mammosphere formation and migration/invasion of breast cancer cells overexpressing ErbB2.Conclusionsp38γ MAPK is downstream of ErbB2 and plays an important role in alcohol-enhanced aggressiveness of breast cancer. Therefore, in addition to ErbB2/HER2, p38γ MAPK may be a potential target for the treatment of alcohol-enhanced cancer aggressiveness.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0532-4) contains supplementary material, which is available to authorized users.

Highlights

  • Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence

  • We hypothesize that alcohol may enhance the aggressiveness of breast cancer cells by stimulating the ErbB2/p38γ mitogen-activated protein kinase (MAPK) pathway and activating cancer stem cells (CSC). With both in vitro and in vivo approaches, we show that alcohol increases CSC population in ErbB2 overexpressing breast cancer cells; alcohol enhances the lung and colon metastasis and CSC population in MMTV-neu transgenic mice. p38γ MAPK is downstream of ErbB2 and ErbB2/p38γ signaling pathway and it plays an important role in alcohol-induced aggressiveness of breast cancer cells

  • Alcohol increases cancer stem like cell (CSC) population in breast cancer cells overexpressing ErbB2 We previously demonstrated that breast cancer cells overexpressing ErbB2 are much more sensitive to alcoholinduced migration/invasion compared to those cells with a low level of ErbB2 [8, 12, 15]

Read more

Summary

Introduction

Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence. This study was designed to investigate the mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. The epidemiological findings are supported by experimental studies using various model systems which show that alcohol promotes mammary tumorigenesis/metastasis in animals, stimulates migration/invasion of breast tumor cells and enhances the expression of markers for epithelial-mesenchymal transition in cell culture systems [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]. The molecular mechanisms underlying alcohol promotion of breast cancer development and progression remain unclear

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call