Abstract

AbstractWe initiate the study of the role of erasures in local decoding and use our understanding to prove a separation between erasure‐resilient and tolerant property testing. We first investigate local list‐decoding in the presence of erasures. We prove an analog of a famous result of Goldreich and Levin on local list‐decodability of the Hadamard code. Specifically, we show that the Hadamard code is locally list‐decodable in the presence of a constant fraction of erasures, arbitrarily close to 1, with list sizes and query complexity better than in the Goldreich–Levin theorem. We further study approximate locally erasure list‐decodable codes and use them to construct a property that is erasure‐resiliently testable with query complexity independent of the input length, , but requires queries for tolerant testing. We also investigate the general relationship between local decoding in the presence of errors and in the presence of erasures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.