Abstract

According to Landauer's principle, erasing a memory requires an average work of at least kTln2 per bit. Recent experiments have confirmed this prediction for a one-bit memory represented by a symmetric double-well potential. Here, we present an experimental study of erasure for a memory encoded in an asymmetric double-well potential. Using a feedback trap, we find that the average work to erase can be less than kTln2. Surprisingly, erasure protocols that differ subtly give measurably different values for the asymptotic work, a result we explain by showing that one protocol is symmetric with the respect to time reversal, while the other is not. The differences between the protocols help clarify the distinctions between thermodynamic and logical reversibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.