Abstract
We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP waveguide grating structures. This reveals the mechanisms for the focusing/defocusing of laser beams by chirped grating structures. Erasability and reconstructibility of the photoresponsive LCPs guarantee rewritability of the thin-film diode lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.