Abstract

Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. While the majority of Lyme disease patients can resolve their symptoms if treated promptly, 10–20% of patients suffer from prolonged symptoms called post-treatment Lyme disease syndrome (PTLDS). Although the cause for PTLDS is unclear, one possibility is the presence of bacterial persisters not effectively cleared by the current Lyme antibiotics. Recent studies identified several drug candidates including daptomycin, daunomycin, doxorubicin, and mitomycin C that had good activity against B. burgdorferi persisters. However, their relative activities against B. burgdorferi persisters have not been evaluated under the same conditions. In this study, we tested the anti-persister activities of these drugs against both 7-day and 15-day old stationary phase cultures of B. burgdorferi individually as well as in combination with Lyme antibiotics doxycycline and cefuroxime (Ceftin). Our findings demonstrate daunomycin and daptomycin were more active than mitomycin C in single drug comparison at 10 and 20 μM, as well as in drug combinations with doxycycline and cefuroxime. In addition, daunomycin was more active than doxorubicin which correlated with their ability to stain and accumulate in B. burgdorferi. The two drug combination of doxycycline and cefuroxime was unable to eradicate biofilm-like microcolonies of B. burgdorferi persisters. However, the addition of either daunomycin or daptomycin to the doxycycline + cefuroxime combination completely eradicated the biofilm-like structures and produced no visible bacterial regrowth after 7 and 21 days, while the addition of doxorubicin was unable to prevent regrowth at either 7 or 21 day subculture. Mitomycin C in combination with doxycycline and cefuroxime caused no regrowth at 7 days but visible spirochetal regrowth occurred after 21 day subculture. Furthermore, we found that cefuroxime (Ceftin), the third commonly used and most active antibiotic to treat Lyme disease, could replace cefoperazone (a drug no longer available in the US) in the daptomycin + doxycycline combination with complete eradication of the biofilm-like structures as shown by lack of any regrowth in subcultures. Our findings may have implications for improved treatment of Lyme disease.

Highlights

  • Borrelia burgdorferi is the causative agent of Lyme disease, which is the most common vector-borne disease in the United States with an estimated 300,000 cases in 2013(CDC, 2015a)

  • Daptomycin (Feng et al, 2014a), daunomycin (Feng et al, 2015b), doxorubicin (Feng et al, 2015b), and mitomycin C (Feng et al, 2015b; Sharma et al, 2015) were identified to have high activity against B. burgdorferi persisters, their relative activities have not been compared under the same conditions

  • Residual viability of B. burgdorferi after the antibiotic treatment was determined using the SYBR Green I/PI viability assay followed by epifluorescence microscopy and calculation of the percentage of green cells over red cells as described (Feng et al, 2014a)

Read more

Summary

Introduction

Borrelia burgdorferi is the causative agent of Lyme disease, which is the most common vector-borne disease in the United States with an estimated 300,000 cases in 2013(CDC, 2015a). In the early stage of Lyme disease, approximately 50% of patients have localized erythema migrans, a target-shaped rash that expands as the bacteria disseminate from the cutaneous infection site (CDC, 2015a). Late stage Lyme disease is a multisystem disorder with symptoms including arthritis, carditis, and neurologic impairment (CDC, 2015a). The majority of Lyme disease patients can resolve their symptoms if treated promptly with doxycycline, amoxicillin, or cefuroxime (Wormser et al, 2006). At least 10–20% of Lyme disease patients experience prolonged symptoms such as neurologic impairment, muscular pain, and fatigue 6 months after antibiotic treatment, a collection of symptoms called Post-Treatment Lyme Disease Syndrome (PTLDS; CDC, 2015b)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.