Abstract
Here, the very high thermal sensing capability of Er3+,Yb3+ doped LaF3 nanoparticles, where Er3+-to-Yb3+ energy transfer is used, is reported. Also Pr3+,Yb3+ doped LaF3 nanoparticles, with Pr3+-to-Yb3+ energy transfer, showed temperature sensing in the same temperature regime, but with lower performance. The investigated Er3+,Yb3+ doped LaF3 nanoparticles show a remarkably high relative sensitivity Sr of up to 6.6092% K-1 (at 15 K) in the near-infrared (NIR) region, in the cryogenic (15-105 K) temperature region opening a whole new thermometric system suitable for advanced applications in the very low temperature ranges. To date reports on NIR cryogenic sensors have been very scarce.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.