Abstract

Transparent oxyfluoride glass-ceramics doped with rare earth ions (RE3+) are promising materials for photoluminescence up- and down-conversion. In this study, glass compositions within the system 40SiO2–25Al2O3–18Li2O–7LiF–10YF3 (mol.%) doped with ErF3 and codoped with ErF3/YbF3 were prepared by melt-quenching method and subjected to thermal treatment at temperatures above glass transition (Tg + 35 °C) for long dwell times to obtain the corresponding glass-ceramics. The formation of LiYF4 and LiAlSiO4 nanocrystals was confirmed by XRD analysis after thermal treatment at 540 °C for 20 h. The increase in the treatment time up to 80 h resulted in the enhancement of the UC luminescence yield and the decrease of the Red to Green ratio (R/G) emission intensity. Due to the nano-sized crystals, the glass-ceramic products were transparent (%T) in near-infrared (NIR) and visible spectral region with %T remaining approximately 85% and 75%, respectively, after 20 h treatment. However, the visible window transparency reduced, with %T dropping to around 50% after 80 h due to the increase in crystal size and crystalline fraction. The influence of Yb3+ co-doping on the up-conversion (UC) luminescence has been investigated in the glass-ceramics and compared to the parent glasses, confirming that Yb3+ ions were also a key factor for facilitating up-conversion via energy transfer (ET), leading to a greater luminescence yield than for Er3+ single doped glass-ceramics and tuning of R/G intensities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call