Abstract

It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between − 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p < 0.05). The highest failure rate (33.3%) during mini-implant insertion was noted for self-drilling method (G4) as compared with G1, G2, and G3 groups (p < 0.05). The small diameter decortication by Er:YAG laser appeared to provide better primary stability as compared to drill and piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.

Highlights

  • Orthodontic mini-implants, as a type of anchorage system, are becoming more popular in modern orthodontic treatment [1]

  • The aim of the study was to examine and compare the miniimplant primary stability placed in pigs mandible by a manual method: without and with bone decortication using drill, piezosurgery, and erbium:yttrium-aluminum-garnet laser by means of Periotest device

  • The analysis of the mini-implant primary stability conjugated with Periotest value (PTV) after bone decortication revealed significant higher primary stability for specimens prepared using Er:YAG laser (G1) in comparison with piezosurgery (G3) (p = 0.0002)

Read more

Summary

Introduction

Orthodontic mini-implants, as a type of anchorage system, are becoming more popular in modern orthodontic treatment [1]. Anchorage instability associated with classical anchorage process was eliminated by using mini-implants [2]. According to Beak et al [3], mini-implant breakdown occurs in short time following early force loading. Improving early-phase stability is crucial for enhancing the reliability of mini-implant treatment [4]. Decortication refers to the removal of the cortical portion of the alveolar bone. This procedure may be performed by using various cutting devices such as drills, piezosurgery, or appropriate lasers. Orthodontic implants are inserted by hand or mechanical tools into the prepared cortical bone.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call