Abstract

This case report was aimed at primary clinical experience concerning surgical extraction of a displaced tooth with the help of the Er:YAG laser based on refined computer-assisted presurgical planning. The case refers to the extraction of a displaced maxillary canine in a female patient. For the osteotomy, a pulsed Er:YAG laser was applied with pulse energy of 500 mJ, pulse duration of 250 microsec and pulse frequency of 12 Hz. The fiber tip (1000 microm) was kept with a 1-2 mm distance to the bone surface. Refined presurgical computer-assisted planning was performed with regard to minimization of bone loss, especially for the sake of preservation of the alveolar ridge. Based on a detailed three-dimensional (3D) reconstruction of the patient's anatomy, dynamical simulations of a buccal and a palatinal variant of access osteotomy were provided. Additionally, a volumetric profile of bone tissue quality based on Hounsfield values was generated. By means of the 3D reconstruction and the tissue quality profile, both bone thickness and quality was evaluated as superior in the palatinal rather than in the vestibular part. Therefore, a classical buccal access window was chosen. The laser osteotomy allowed an exact cut geometry without any thermal damage and merely minimal bone loss. The enhanced possibilities by laser osteotomy allowed for full exploitation of presurgical planning. As regards the actual case, computer-assisted planning was of benefit for an appropriate choice of access osteotomy by enabling evaluation of the consistency of the bony structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call