Abstract

The endoplasmic reticulum (ER) endomembrane is a central site for protein synthesis. Perturbation of ER homeostasis can result in an accumulation of unfolded proteins within the ER lumen, causing ER stress and the unfolded protein response (UPR). In humans, ER stress and UPR are closely associated with a vast number of diseases, including viral diseases. In plants, two arms that govern the UPR signaling network have been described: one that contains two ER membrane–associated transcription factors (bZIP17 and bZIP28) and the other that encompasses a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Although early studies mainly focus on the essential roles of the UPR in abiotic stresses, the significance of UPR in plant diseases caused by virus infections has recently drawn much attention. This chapter summarizes the latest scenario of ER stress and UPR in virus-infected plant cells, highlights the emerging roles of the IRE1 pathway in virus infections, and outlines exciting future directions to spark more research interest in the UPR field in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.