Abstract

Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2) that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1) gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proα1(I) chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and −3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.

Highlights

  • Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta (OI), the most common heritable cause of skeletal fractures and bone deformation in humans [1]

  • Osteogenesis imperfecta (OI) is a heterogeneous collection of connective tissue disorders typically caused by mutations in the COL1A1/2 genes that encode the chains of type I collagen, the principle structural protein of bone

  • Phenotypic expression in OI depends on the nature of the mutation, causing a clinical heterogeneity ranging from a mild risk of fractures to perinatal lethality

Read more

Summary

Introduction

Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta (OI), the most common heritable cause of skeletal fractures and bone deformation in humans [1]. Novel molecules and loci apart from classic type I collagens have been implicated in both murine [2] and human [3,4,5] alternative recessive forms of OI, expanding the genetic heterogeneity. Apart from its biomechanical properties, type I collagen stores key factors for remodeling maintenance, and acts as an adhesive substrate with cellular receptors and other matricellular components along its major ligand binding regions [7]. These properties regulate complex intracellular signal transduction pathways for tissue remodeling and repair, immune response, polarization, migration, proliferation, differentiation, and cell survival within various cellular contexts [8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.