Abstract
ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta
Highlights
Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta (OI), the most common heritable cause of skeletal fractures and bone deformation in humans [1]
Osteogenesis imperfecta (OI) is a heterogeneous collection of connective tissue disorders typically caused by mutations in the COL1A1/2 genes that encode the chains of type I collagen, the principle structural protein of bone
Phenotypic expression in OI depends on the nature of the mutation, causing a clinical heterogeneity ranging from a mild risk of fractures to perinatal lethality
Summary
Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta (OI), the most common heritable cause of skeletal fractures and bone deformation in humans [1]. Novel molecules and loci apart from classic type I collagens have been implicated in both murine [2] and human [3,4,5] alternative recessive forms of OI, expanding the genetic heterogeneity. Apart from its biomechanical properties, type I collagen stores key factors for remodeling maintenance, and acts as an adhesive substrate with cellular receptors and other matricellular components along its major ligand binding regions [7]. These properties regulate complex intracellular signal transduction pathways for tissue remodeling and repair, immune response, polarization, migration, proliferation, differentiation, and cell survival within various cellular contexts [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.