Abstract

Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca(2+) signaling and activation of Ca(2+)-dependent Cl(-) (TMEM16A) and K(+) (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca(2+) deposits. hBest1 is, therefore, important for Ca(2+) handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP(3))-induced Ca(2+) release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca(2+) signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call