Abstract
Integrated photonics capable of incorporating rare-earth ions with high optical coherence is desirable for realizing efficient quantum transducers, compact quantum memories, and hybrid quantum systems. Here we describe a photonic platform based on the SmartCut erbium-doped lithium niobate thin film, and explore its stable optical transitions at telecom wavelength in a dilution refrigerator. Optical coherence time of up to $180\phantom{\rule{0.2em}{0ex}}\ensuremath{\mu}\mathrm{s}$, rivaling the value of bulk crystals, is achieved in optical ridge waveguides and ring resonators. With this integrated platform, we demonstrate tunable light-ion interaction and flexible control of optical thickness by exploiting long waveguides, whose lengths are in principle variable. This unique ability to obtain high optical density using low-concentration ions further leads to the observation of multiecho pulse trains in centimeter-long waveguides. Our results establish a promising photonic platform for quantum information processing with rare-earth ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.