Abstract

Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens in C. elegans to identify a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. Deleting C. elegans ERGU-1 causes excessive H2O2 and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behaviors. Both C. elegans and human ERGU-1 proteins localize to ER membranes and form network reticulum structures. We name this system ER-GUARD, Endoplasmic Reticulum Guardian Aegis of Redox Defense. Human and Drosophila homologs of ERGU-1 can rescue C. elegans mutant phenotypes, demonstrating evolutionarily ancient and conserved functions. Together, our results reveal an ER-membrane-specific protein machinery and defense-net system ER-GUARD for peroxide detoxification and suggest a previously unknown but conserved pathway for antioxidant defense in animal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call