Abstract

Chromosomal instability in cancer results in the formation of nuclear aberrations termed micronuclei. Spontaneous loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and innate immune activation. Despite connections to cancer genome evolution and anti-tumor immunity, the mechanisms underlying damage and immune sensing of micronuclear DNA are poorly understood. Here, we use a novel method for the purification of micronuclei and live-cell imaging to show that the ER-associated nuclease TREX1 inhibits cGAS sensing of micronuclei by stably associating with and degrading micronuclear DNA upon micronuclear envelope rupture. We identify a TREX1 mutation, previously associated with autoimmune disease, that untethers TREX1 from the ER, disrupts TREX1 localization to micronuclei, alleviates micronuclear DNA damage, and enhances cGAS recognition of micronuclei. Together, these results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER-tethering in preventing autoimmunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.