Abstract

Primary osteoporosis (POP) is a widespread and severe disorder of bone metabolism characterized by reduced bone mass and destruction of bone structure, frequently inducing fracture risk and imposing a heavy economic burden on public life. The development of POP partially revolves around the estrogen receptor β (ER-β), one of the major mediator receptors of estrogen that influences apoptosis in a range of cells. We performed KEGG and GO analysis by mining the transcriptomic dataset of POP samples showing significant enrichment of differentially expressed genes (DEGs) in multiple apoptosis-related pathways. The results of the Spearman correlation analysis and Protein-Protein Interaction (PPI) Networks screening of hub genes indicated that vascular endothelial growth factor A (VEGFA) may be a key target of ER-β in controlling osteoblast apoptosis. Further, we carried out high-throughput sequencing of ESR2-silenced MC3T3-E1 cells and noticed a substantial suppression in VEGFA expression and all apoptosis-related pathways. In addition, we determined the cell cycle and apoptosis by constructing a VEGFA-silenced cell model utilizing flow cytometry (FCM), and the results showed that ER-β could regulate the osteoblast cycle and thus promote osteoblast apoptosis by promoting VEGFA expression. And Western blot results showed that apoptosis was most likely realized through the regulation of downstream apoptosis markers c-JUN (c-Jun N-terminal kinase, JNK) and GADD45G (Growth Arrest and DNA Damage-Inducible Protein 45 gamma). The effects of ESR2 and VEGFA on the proliferation of osteoblasts were lastly assessed using the cell counting kit- 8 (CCK-8) assay. In conclusion, this study identifies that the roles of ER-β in the regulation of osteoblast apoptosis are closely related to VEGFA and provides a new target for POP treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.