Abstract

The equivariant with respect to a finite group action Poincaré series of a collection of r valuations was defined earlier as a power series in r variables with the coefficients from a modification of the Burnside ring of the group. Here we show that (modulo simple exceptions) the equivariant Poincaré series determines the equivariant topology of the collection of valuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.