Abstract

We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, (1) we present the general regular solution to Cauchy's additive functional equation on bounded convex domains. This provides a k-dimensional generalization of the so-called interval lemma, allowing us to deduce affine properties of the function from certain additivity relations. (2) We study the discrete geometry of additivity domains of piecewise linear functions, providing a framework for finite tests of minimality and extremality. (3) We give a theory of non-extremality certificates in the form of perturbation functions. We apply these tools in the context of minimal valid functions for the two-dimensional infinite group problem that are piecewise linear on a standard triangulation of the plane, under the assumption of a regularity condition called diagonal constrainedness. We show that the extremality of a minimal valid function is equivalent to the extremality of its restriction to a certain finite two-dimensional group problem. This gives an algorithm for testing the extremality of a given minimal valid function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.