Abstract

We explain how equivariant localization may be applied to AdS/CFT to compute various BPS observables in gravity, such as central charges and conformal dimensions of chiral primary operators, without solving the supergravity equations. The key ingredient is that supersymmetric AdS solutions with an R-symmetry are equipped with a set of equivariantly closed forms. These may in turn be used to impose flux quantization and compute observables for supergravity solutions, using only topological information and the Berline-Vergne-Atiyah-Bott fixed point formula. We illustrate the formalism by considering AdS5 × M6 and AdS3 × M8 solutions of D = 11 supergravity. As well as recovering results for many classes of well-known supergravity solutions, without using any knowledge of their explicit form, we also compute central charges for which explicit supergravity solutions have not been constructed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call