Abstract
Toric orbifolds are a topological generalization of projective toric varieties associated to simplicial fans. We introduce some sufficient conditions on the combinatorial data associated to a toric orbifold to ensure the existence of an invariant cell structure on it and call such a toric orbifold retractable. In this paper, our main goal is to study equivariant cohomology theories of retractable toric orbifolds. Our results extend the corresponding results on divisive weighted projective spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.