Abstract
Tangent spaces to Schubert varieties of type A were characterized by Lakshmibai and Seshadri [LS84]. This result was extended to the other classical types by Lakshmibai [Lak95, Lak00b], and [Lak00a]. We give a uniform characterization of tangent spaces to Schubert varieties in cominuscule G/P. Our results extend beyond cominuscule G/P; they describe the tangent space to any Schubert variety in G/B at a point xB, where x is a cominuscule Weyl group element in the sense of Peterson. Our results also give partial information about the tangent space to any Schubert variety at any point. Our method is to describe the tangent spaces of Kazhdan–Lusztig varieties, and then to recover results for Schubert varieties. Our proof uses a relationship between weights of the tangent space of a variety with torus action and factors of the class of the variety in torus equivariant K-theory. The proof relies on a formula for Schubert classes in equivariant K-theory due to Graham [Gra02] and Willems [Wil06] and on a theorem on subword complexes due to Knutson and Miller [KM04, KM05].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.