Abstract
(1.1) This paper concerns three aspects of the action of a compact group K on a space X . The ®rst is concrete and the others are rather abstract. (1) Equivariantly formal spaces. These have the property that their cohomology may be computed from the structure of the zero and one dimensional orbits of the action of a maximal torus in K. (2) Koszul duality. This enables one to translate facts about equivariant cohomology into facts about its ordinary cohomology, and back. (3) Equivariant derived category. Many of the results in this paper apply not only to equivariant cohomology, but also to equivariant intersection cohomology. The equivariant derived category provides a framework in both of these may be considered simultaneously, as examples of ``equivariant sheaves''. We treat singular spaces on an equal footing with nonsingular ones. Along the way, we give a description of equivariant homology and equivariant intersection homology in terms of equivariant geometric cycles. Most of the themes in this paper have been considered by other authors in some context. In Sect. 1.7 we sketch the precursors that we know about. For most of the constructions in this paper, we consider an action of a compact connected Lie group K on a space X , however for the purposes of the introduction we will take K S1 to be a torus. Invent. math. 131, 25±83 (1998)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.