Abstract

Cold-formed thin-walled channel sections with perforated webs (thermal studs) are widely used in external wall panels in cold regions to reduce the cold bridging effect. However, no design method appears to be available for this type of structure. A possible method is to convert the perforated web of a thermal stud into a solid one with a reduced thickness (which is referred to as the equivalent thickness) and then adopt an existing design method for solid sections (e.g. EN 1993-1-3). This paper presents the development of a method to calculate the equivalent web thickness. The equivalent thickness calculation equation is based on regression analysis of a large number of finite element simulation results of elastic local buckling strength of perforated plates under compression, considering the effects of a number of different design variables such as plate depth, thickness, perforation patterns and dimensions of the plate. The FE simulations were carried out using a general FE software. This study suggests that the equivalent thickness is mainly related to the plate width to thickness ratio, the total width of perforation at the critical section and the width of the perforation zone (total plate width between the first and last perforation). A regression equation has been proposed to relate the equivalent thickness to these parameters. To demonstrate the validity of the proposed equivalent thickness method, the compression strengths of a large range of perforated columns have been simulated by using either the original perforated sections or the equivalent solid section; and a comparison of the simulation results shows good agreement between the two sets of results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.