Abstract

The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development and the performance of many modern engineering products: automobiles, jet engines, rockets, bridges, electric motors, electric generators, and so on. Whenever a mechanical system contains storage elements for kinetic and potential energies, there will be vibration. The vibration of a mechanical system is a continual exchange between kinetic and potential energies. The vibration level is reduced by the presence of energy dissipation elements in the system. The problem of vibration is further accentuated because of the presence of time-varying external excitations, for example, the problem of resonance in a rotating machine, which is caused by the inevitable presence of rotor unbalance. There are many situations where the vibration is caused by internal excitation, which is dependent on the level of vibration. This type of vibration is known as self-excited oscillations, for example, the failure of the Tacoma suspension bridge (Billah and Scanlan, 1991) and the fluttering of an aircraft wing. This course deals with the characterization and the computation of the response of a mechanical system caused by time-varying excitations, which can be independent of or dependent on vibratory response. In general, the vibration level of a component of a machine has to be decreased to increase its useful life. As a result, the course also examines the methods used to reduce vibratory response. Further, this course also develops an input/output description of a dynamic system, which is useful for the design of a feedback control system in a future course in the curriculum. The book starts with the definition of basic vibration elements and the vibration analysis of a single-degree-of-freedom (SDOF) system, which is the simplest lumped parameter mechanical system and contains one independent kinetic energy storage element (mass), one independent potential energy storage element (spring), and one independent energy dissipation element (damper). The analysis deals with natural vibration (without any external excitation) and forced response as well. The following types of external excitations are considered: constant, sinusoidal, periodic, and impulsive. In addition, an arbitrary nature of excitation is considered. Then, these analyses are presented for a complex lumped parameter mechanical system with multiple degrees of freedom (MDOF). The design of vibration absorbers is presented. Next, the vibration of a system with continuous distributions of mass, such as strings, longitudinal bars, torsional shafts, and beams, is presented. It is emphasized that the previous analyses of lumped parameter systems serve as building blocks for computation of the response of a continuous system that is governed by a partial differential equation. Last, the fundamentals of finite element analysis (FEA), which is widely used for vibration analysis of a real structure with a complex shape, are presented. This presentation again shows the application of concepts developed in the context of SDOF and MDOF systems to FEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.