Abstract
An original formulation for the elastic analysis of multilayered shells is presented in this work. The key features of the formulation are: the representation of the shell mean surface via a generic system of curvilinear coordinates; the unified treatment of general shell theories via an Equivalent-Single-Layer approach based on the through-the-thickness expansion of the covariant components of the displacement field; and an Interior Penalty discontinuous Galerkin scheme for the solution of the set of governing equations. The combined use of these features enables a high-order solution of the multilayered shell problem. Several numerical tests are presented for isotropic, orthotropic and multilayered shells with different geometrical configurations and boundary conditions, including the case of a non-smooth geometry. Comparisons with analytical solutions and finite-element simulations show the high-order accuracy as well as the capability and robustness of the proposed formulation, which can be a valuable tool for the analysis of generally-curved multilayered shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.