Abstract
Seismic performance of cylindrical liquid storage tanks base-isolated by bilinear bearings is investigated. The paper displays a stochastic parametrical study in which three design parameters, namely isolation period, yield strength and viscous damping ratio, characterizing the isolation system are taken into consideration. The earthquake excitation, modeled as a stationary random process, is characterized by a power spectral density function calculated via a compatible seismic design spectrum. The stochastic response of the base-isolated cylindrical tanks is obtained by the convolution between the frequency response function of the system and the input power spectrum. To determine effective damping and stiffness coefficients corresponding to the equivalent linear system a statistical linearization scheme was used. For the purpose of evaluating the seismic behavior under different conditions, two liquid levels (aspect ratios) and soil types (soft and stiff soil) were considered.Thus, the study demonstrates the influence of each characteristic parameter of the isolation system and soil conditions on the response of cylindrical base-isolated tanks and principally allows visualizing the seismic performance that can be achieved through the selection of those parameters under certain soil conditions. Further, it is confirmed that soft soil conditions amplify the overall response of the system specially the base and sloshing displacements, as well as the normalized base shear to a lesser extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.