Abstract

Cable-membrane structure is a kind of flexible tension structures, of which both cables and membranes are lack of bending and compressing stiffness. In order to reduce the nonlinearity and the strong coupling between its geometric shape and internal stress distribution to improve the computational efficiency and convergence, this paper developed an equivalent-force density method by identifying the equivalent axial force density and equivalent transversal force density to replace the prestress in triangular and quadrilateral membrane elements. Then the method was applied as a shape-finding tool for cable-membrane structure. Furthermore, several numerical simulations, including planar cable-membrane structure, catenoid and umbrella/tent-like cable-membrane structures, were conducted to confirm the efficiency and robustness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.