Abstract

Tweek atmospherics are ELF/VLF pulse signals with frequency dispersion characteristics that originate from lightning discharges and propagate in the Earth-ionosphere waveguide mode over long distances. In this paper, we estimate equivalent nighttime electron densities at reflection heights in D-region ionosphere at low-middle latitudes by accurately reading the first-order mode cut-off frequency of tweek atmospherics. The estimation method was applied to tweek atmospherics received simultaneously at Moshiri and Kagoshima in Japan. Equivalent electron densities ranged from 20—28 el./cm3 at ionospheric reflection heights of 80—85 km. Comparing our estimates with electron density profiles obtained from the IRI-95 model, MF radar measurements, and rocket experiments revealed almost consistent results for the lower part of the D-region ionosphere. The tweek method has the unique advantage of enabling reflection-height (equivalent electron densities) monitoring over a wide area of several thousand kilometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.